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ABSTRACT

Chip-multiprocessors are quickly gaining momentum and becoming popular in all areas of computational tasks . However
the success of chip-multiprocessors depends on addressing the difficulty in the development of multithreaded applications
. To overcome this difficulty it is necessary to develop new chip-multiprocessors with advanced programming models .
Presently various architectures relies on software simulators which are too slow . This paper presents an alternative to
simulation by designing platforms based on FPGAs for chip-multiprocessors and its application in multithreaded programs.
The first prototype for chip- multiprocessors, ATLAS with hardware support for transactional memory, a technology aiming
to simplify parallel programming is presented. ATLAS includes 8 embedded PowerPC cores that access coherent shared
memory in a transactional manner .ATLAS uses the BEE2 multi-FPGA board to provide a system with 8 PowerPC cores
that run at100MHz and runs Linux... ATLAS provides significant benefits for chip multiprocessors research such as 100x
performance improvement over a software simulator and good visibility that help swith software tuning and architectural
improvements. In addition to presenting and evaluating ATLAS, we share our observations about building a FPGA-based
framework for chip-multiprocessors research. Overall, the ATLAS prototype provides an excellent framework for further
research on the software and hardware techniques necessary to deliver on the potential of transactional memory.

I. INTRODUCTION

Processor vendors are turning en mass towards
chipmultiprocessors (CMPs) as a practical way to turn
increasing transistor budgets into scalable performance
without the power and complexity challenges of
aggressive  uniprocessors. The trend towards
chip-multiprocessors in the embedded domain is as
strong as it is in the desktop and server domains.
Several embedded vendors, such as ARM, ARC,
Broadcom, Freescale, NEC, PMC-Sierra, and Raza
Microelectronics, are selling chips or licensing designs
for chip-multiprocessors for cache coherent shared
memory configurations.. Moreover, there is significant
research activity in porting embedded applications for
chip-multiprocessors. While in some systems we can
utilize chip-multiprocessor cores by running many
programs  concurrently, parallel programming is
necessary in order to reduce the execution time of one
program.  Existing models  for  multithreaded
programming using locks are challenging for most
programmers as they introduce a trade-off between
performance and correctness. Transactional Memory
(TM) ] has been proposed as a promising technology
that can simplify concurrency management in
multithreaded programs.TM allows programmers to
define coarse-grain parallel tasks (transactions) that will
be executed atomically and in isolation. TM executes

these tasks in parallel on a chip-multiprocessor
providing excellent performance. Transactional memory,
a new multiprocessor architecture intended to make
lock-free synchronization as efficient (and easy touse)
as conventional techniques based on mutual exclusion.
Transactional memory allows programmers to define
customized read-modify-write operations that apply to
multiple, independently-chosen words of memory.

This paper presents ATLAS, the first prototype of
a chip-multiprocessors with hardware support for
transactional memory. ATLAS includes 8 embedded
PowerPC cores with a shared memory system. The
data cache for each core is enhanced to buffer
transactional state during optimistic execution and
detect potential  conflicts  between  concurrent
transactions. To develop a technology like TM,
collaborative research on both hardware and software
aspects is necessary. Experimental chip prototypes can
be used to speedup TM software research, but due to
their fixed nature, they cannot help with the exploration
of hardware alternatives. We mapped ATLAS to the
BEE2 multi-FPGA board [6] to provide a full-featured
prototype operating at 100MHz. The system boots the
GNU/Linux operating system and provides support for
transaction-based parallel programming and parallel
application tuning. ATLAS provides a valuable tool for
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validating the advantages of transactional memory. The
FPGA mapping allows hardware researchers to tune
hardware parameters as further insights are generated
from application studies

IIl. TRANSACTIONAL MEMORY

Transactional memory (TM) provides an
easy-to-use and high-performance parallel programming
model for the upcoming chip-multiprocessor systems.
Several researchers have proposed alternative
hardware and software TM implementations. However,
the lack of transaction- Transactional Memory (TM) [14]
provides an alternative model for concurrency
management. A TM system operates on shared data
using sequences of instructions (transactions)which
execute in an atomic and isolated manner
[8]. Transactional memory simplifies parallel
programming by providing non-blocking synchronization
with easy-to-write, coarse-grain transactions by virtue
of optimistic concurrency. .

With transactional memory, programmers define
atomic blocks of code (transactions) that can include
unstructured flow-control and any number of memory
accesses.

To parallelize an application, a programmer must
break the code up into multiple threads that can
execute in parallel. The programmer must also
synchronize the threads when they potentially operate
on the same data in memory. A transaction is a finite
sequence of machine instructions, executed by a single
process, satisfying the following properties:

e Serializability. Transactions appear to execute
serially ,meaning that the steps of one transaction
never appear to be interleaved with the steps of
another. Committed transactions are never
observed by different processors to execute in
different orders.

e Afomicity. Each transaction makes a sequence of
tentative changes to shared memory. When the
transaction completes, it either commits, making its
changes visible to other processes (effectively)
instantaneously ,or it aborts, causing its changes
to be discarded. We assume here that a process
executes only one transactional a time. Although
the model could be extended to permit overlapping
or logically nested transactions, we have seen no

examples where they are needed. A TM system
must implement the following mechanisms:

(1) isolation of stores until the transaction
commits;

(2) conflict detection between concurrent

transactions;
(3) atomic commit of stores to shared memory;

(4) rollback of stores when conflicts are
detected.

Transactional memory provides the following
primitive instructions for accessing memory:

e [oad-transactional (LT) reads the value of a
shared memory location into a private register.

e [oad-transactional-exclusive (LTX) reads the
value ofa shared memory location into a private
register, “hinting” that the location is likely to be
updated.

e  Store-transactional (ST) tentatively writes a value
from a private register to a shared memory
location. This new value does not become visible
to other processors until the transaction
successfully commits.

lll. IMPLEMENTATION

In this section, we give an overview of an
architecture that supports transactional memory. An
associated technical report gives detailed protocols for
both bus based(snoopy cache) and network-based
(directory) architectures.

Our design satisfies the following criteria:

e Non-transactional operations use the same
caches ,cache controller logic, and
coherence protocols they would have used
in the absence of transactional memory.

e Custom hardware support is restricted to
primary caches and the instructions needed
to communicate with them.

e Committing or aborting a transaction is an
operation local to the cache. It does not
require communicating with other processes
or writing data back to memory.

Transactional memory is implemented by
modifying standard multiprocessor cache coherence
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protocols. We exploit access rights, which are usually
connected with cache residence. In general, access
may be non-exclusive(shared) permitting reads, or
exclusive, permitting writes. At any time a memory
location is either (1) not immediately accessible by any
processor (i.e., in memory only), (2)accessible
non-exclusively by one or more processors, or(3)
accessible exclusively by exactly one processor. Most
cache coherence protocols incorporate some form of
these access rights.

3.1 Multithreaded Applications:

Table 1 presents the 25 multithreaded
applications we used in this study. The applications

were parallelized using four parallel programming
models: Java threads [4], Cand Pthreads [19], C and
Open MP [11], and the ANL parallel processing
macros. Java is increasingly popular and includes
multithreading in the base language specification. Open
MP is a widely adopted model based on high level
compiler directives for semi-automatic parallelization.
Pthreads is a widely available multithreading package
forPOSIX systems. Finally, the ANL macros were
designed to provide a simple, concise, and portable
interface covering a variety of parallel applications. We
use the Java, Pthreads, and ANL applications to study
the use of transactions for non-blocking synchronization
(29 applications).

Table 1. Examples of Multithreaded applications

Prog. Model Application Problem Size Source Domain / Description
Java MolDyn 2,048 Particles JavaGrande Scientific / Molelcular Dynamics
MonleCarlo 10,000 Runs JavaGrande Scientific/Finance
RayTracer 150 x 150Pixels JavaGrande Graphics / 3D Raytracere
Crypt 200,000 Bytes JavaGrande Kernel / Encryption and Decryption
LUFact 500 x 500Matrix JavaGrande Kernel / Solving Nx MLinear System
Series 200 Coefficients JavaGrande Kernel / First N Fourier Coefficients
SOR 1,000 x 1,000Grid JavaGrande Kernel / Successive Over-Relaxation
SparseMatmul 250,000 x 250,000 Matrix | JavaGrande Kernel / Matrix Multiplication
SPECibb2000 8 Warehouses SPECibb2000 Commercial / E-Commerce
PMD 18 Java Files DACapo Commercial / Java Code Checking
HSQLDB 10 Tellers, 1,000 DACapo Commercial / Banking with hsql database
Pthreads Apache 20 Worker Threads Apache Commercial / HTTP Web server
Kingate 10,000 HTTP Requests SourceForge Commercial / Web proxy
Bp-visioin 384 x 288 Image Univ. of Chi. Machine Learning / Loopy Belief Propagation
Localize 477 x 177 Map CARMEN Robotics / Finding a Robot Position In a Map
Uttra Tic Tac 5 x 5Board, 3 Step SourceForge AlTic Tac Toe Game
MPE G2 640 x 480 Clip MPEG S.S.G. MultiMedia / MPE G2 Decoder
AOL Server 20 Worker Threads AOL Website Commercial / HTTP web server
OpenMP Equake 380K Nodes SPE Comp Scientific / Seismic Wave Propagation Simulation
Art 640 x 90 Image SPE Comp Scientific / Neural Network Simulation
CG 1400 x 1400 Matrix NAS Scientific / Conjugate Gradient Method
BT 12 x 12 x 12 Matrix NAS Scientific / CFD
IS 1M Keys NAS Scientific / Large-scale Integer Sort
Swim 1.900 x 900 Matrix SPE Comp Scientific / Shallow Water Modeling
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IV. THE ATLAS CHIP-MULTIPROCESSOR
SYSTEM

ATLAS is the first full-system framework for a
Chip-multiprocessor with transactional memory support.
This section presents its basic architecture, the
hardware design, and its software environment. The
prototype is currently operational at 100MHz, runs the
GNU/Linux operating system, and runs multithreaded
applications that use transactional memory.

ATLAS prototypes the Transactional Coherence
and Consistency(TCC) architecture for hardware-based
transactional memory . TCC assumes a set of
processor cores with private first-level caches that are
connected through a snooping bus to the shared
memory (shared caches and DRAM).The cores execute
transactions speculatively, while tracking the read- and
write-sets in the data cache organization shown in
Figure 1.
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Fig. 1. The data cache organization for ATLAS

4.1 The ATLAS Hardware Design:

ATLAS includes 8 PowerPC405 cores that run
multithreaded code for applications and a ninth core
that handles the operating system and /O devices. .

ATLAS is also part of the RAMP project that aims
at developing FPGA-based technology for prototyping
modern Chip-multiprocessor systems.

ATLAS prototypes the Transactional Coherence
and Consistency(TCC) architecture for hardware-based
transactional memory . TCC assumes a set of

processor cores with private first-level caches that are
connected through a snooping bus to the shared
memory. As a core performs loads and stores within
a transaction, it sets the speculatively-read (SR) and
speculatively-modified (SM) bits to indicate that the
corresponding word is now part of the transaction’s
read-set or write-set, respectively. Also, the first time a
word is written n a specific cache line, the cache
pushes a pointer to it into the write-set address FIFO.
The cache operates as a write-buffer, isolating all writes
from shared memory until the transaction completes .At
the end of the transaction, the core arbitrates for
permission to commit the write-set to the shared
memory. Figure 3 shows the block diagram of ATLAS.

The four outer FPGAs, labeled as User FPGAs,
are connected in a star topology through the 5th FPGA,
designated as the Control FPGA. Figure 3(a)shows the
block diagram of User FPGA.3(b)Control FPGA
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PPC PPC Control FPGA PPC PPC

15 J[Tccs 15 |[Tecs! Linux & 15 |[Tecs 15 ][Tccs
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User FPGA User FPGA

Fig. 2. Block diagram of ATLAS system

Each FPGA includes two PowerPC405 cores
enhanced with a TCC data cache (TCC PPCs).We use
the hardcore PowerPC cores in the Virtex Il-ProFPGASs.
The data cache design, written in synthesizable Verilog,
is attached to the PowerPC cores through the IBM
Processor Local Bus (PLB). The cache has 32 byte
lines and can be 1, 2, or 4-way set associative (each
way is 8 KB, resulting in cache sizes of 8, 16, or 32
KB). The write-set address FIFO can be configured to
be 0.5, 1, 2, 4 or 8 KB. The internal data cache in
the PowerPC cores is disabled. The TCC cache is in
turn connected to a network switch(shared by two
cores) that forwards cache misses and commit requests
to the control FPGA through a central switch..
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The Control FPGA is a hub that connects all
processors to the shared memory and I/O devices. The
current design does not use secondary caches, though
this is not fundamental. As depicted in Figure 3(b), the
Control  Switch interfaces switch the commit token
arbiter, the DDR controller and the PowerPC 405 core
that runs Linux (Linux PPC). The Linux PPC uses its
built-in caches but its memory writes are broadcast to
all other processors for coherence purposes. All traffic
sent through switches is packetized with a single
packet format to simplify routing around the system.
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Fig. 3. Block diagram of (a)User FPGA,(b)Control
FPGA.

4.2 The ATLAS Software Design.

The ATLAS software stack consists of an API for
programming with transactions and the system software
For application programming, the user partitions work
into parallel threads and defines atomic transactions
within each thread. The ATLAS system software is
summarized in Figure 4.ATLAS runs Linux only on the
Linux PPC. The eight TCCPPCs in the user FPGAs
run a simple runtime kernel that coordinates with Linux.
This approach is similar to the intel MISP concept for
efficient Chip-multiprocessors. During the program
execution, the Linux PPC core handles all interrupts
due to external devices. It also handles any OS
functions needed to support the execution on the TCC
PPCs, like system calls or exceptions such as a TLB
miss. For example, on a TLB exception, the TCC PPC

sends the faulting address to the Linux PPC. The Linux
PPC regenerates the exception, runs the corresponding
OS code to resolve it (e.g. access the page table for
the proper translation entry), and sends the information
back to there questing TCC PPC. An important part of
the ATLAS system is the support or performance tuning
of user applications.

At the current scale of the ATLAS system, a
single core running the OS is sufficient to serve eight
cores running application code. Using a single core for
the OS allows us to run conventional Linux without
special consideration for concurrency in the OS code.
In larger scale configurations of ATLAS. Transactional
memory makes it easy to write a correct parallel
program. Nevertheless, a program may still include
performance bottlenecks such as frequent transaction
violations or expensive overflows.

Linux PPC regenerates, service,
and reply back the request

T Invokes
l parallel work
Transfers

Linux | 1cc | | Tce || Tec |[,,. | Tce
PPC PPcO| |PPC1||PPC 2 PPC 7
A t [ | ]

| Joins
I parallel work
TCC PPCs Request OS support.
(TLB miss, system call)

Fig. 4. Overview of ATLAS system software.

Table 2. Atlas Design Characteristics

CPUs 8 PowgerPC 405 cores (TCC) at
100 Hz

1 PowerPC 405 core (Linux) at
300 MHz

16 KB 2-way |-cache (9 cores)

32 KB 4-way TCC D-cache (8
cores)

16 KB 2-way PowerPC internal
D-cache

(1 core)
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Main Memory |512 MB DDR2 at 200 MHz

1/0 10/100 Mbps Ethernet, RS232
UART, 512 MB Compact Flash

0S Montavista 3.1 (Linux kernel ver.
2.4.30)

EDA Tools Xilinx EDK 7.11

User FPGA | Xilinx XC2VP70, 17,641 LUTs

(26%), 212 KB BRAMs (32%)

Xilinx XC2VP70, 16,284 LUTs
(24%), 66 KB BRAMs (10%)

Ctrl FPGA

V. EVALUATION

Table 2 presents the default configuration of the
ATLAS design and its resource utilization. The design
is currently operational at 100MHz and runs Linux.

5.1 Methodology

To evaluate ATLAS, we ran five applications on
both ATLAS and TASSEL, an established software
simulator for the TCC architecture. The applications
include three scientific benchmarks (radix, mp3d,
ocean); a hash table micro benchmark that performs
random insert, remove, and lookup operations on a
hash table; and vacation, a benchmark that emulates
a travel reservation management and database system.
All applications include multiple threads that operate on
data in shared memory in an irregular manner. We
usethe following evaluation metrics:

e Wall Clock Time: We observe how much
faster ATLAS executes each application
compared to TASSEL by wall clock time (as
seen by the user).

e Speedup: We examine the estimated
architectural speedup of each application
normalized to the uniprocessor execution
time in each system. We compare the
TASSEL and ATLAS speedup to verify that
the FPGA design constraints do not affect
the accuracy of execution results.

e Execution Time Breakdown: To fully
understand the speedup trends, we measure
and compare the execution time breakdown
for each system. The execution time is
divided into the following components:
“Useful” time, stall cycles due to cache
misses, time spent committing transactions,

idle cycles due to thread
imbalance(synchronization), and cycles lost
due to violations. Such breakdowns are
important for both verification]purposes and
to provide programmers and architects with
further profiling information

VI. OBSERVATIONS

The design experience from ATLAS allows us to
make some observations and identify challenges for
constructing FPGA-based frameworks for CMP
research. This section summarizes the most important
issues.

Despite the lower clock frequency as compared
to modern  workstations, FPGA-based CMP
environments can outperform software simulators by
two orders of magnitude.

The major challenges when mapping ASIC-style
RTL for a CMP system on an FPGA are highly
associative  The first challenge is  mapping
highly-associative structures that are commonly used in
CMP designs to implement content-addressable
memories (CAM), hardware schedulers ,victim caches,
and state bits with gang set/reset capabilities. FPGA
vendors now embed CAMs in their chips. Although
CAMs have many useful applications for searching,
they do not help with structures that use gang set or
reset operations .memory structures, large lower level
caches, and interconnect fabrics that span across
FPGAs. FPGA-based frameworks have been
considered to require more effort than software
simulators. This belief is mainly due to the time
required for RTL development of the various smaller
system components that are necessary for full system
modeling. The availability of pre-designed IP libraries
has significantly reduced the design efforts for FPGAs.
ATLAS makes heavy use of components available
through Xilinx and RAMP such as the DRAM and
ethernet controllers. The PowerPC 405 core and the
accompanying Xilinx  software(Xilinx Microprocessor
Debugger or XMD) provide good examples of hardware
and software support for debugging and profiling. The
capabilities of these systems provided a link through a
JTAG chain from the PowerPC coresto the well-known
GNU debugger.
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VI. CONCLUSION

The primary goal of transactional memory is to
make it easier to perform general atomic updates of
multiple independent memory words, avoiding the
problems of locks (priority inversion, convoying, and
deadlock). We studied a set of existing multithreaded
applications in order to characterize their common case
behavior with transactional memory systems.ATLAS is
the first full-system prototype of a CMP with hardware
support for transactional memory. Mapped on the BEE2
multi-FPGA board, ATLAS operates at 100 MHz,runs
Linux, exhibits good performance on parallel
applications and out performs our software simulator by
two orders of magnitude. The ATLAS design indicates
that FPGA based frameworks can be an extremely
useful tool for Chip - multiprocessors.

Nevertheless, the ATLAS experience also
indicates the challenges that researchers must face
when mapping CMP designs to FPGAs. The issues
include challenges in mapping ASIC-style CMP RTL on
to FPGAs, the selection criteria for the base processor,
and debugging and profiling support in pre-designed IP
libraries. The insights from application studies will be
very useful in terms of improving TM implementations
and programming models. ATLAS will also allow us to
study the use to transactions in the operating system
code. From a hardware point of view, we are interested
in studying further hardware support for parallel
application development (debugging and tuning).
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